3.2.32 \(\int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx\) [132]

3.2.32.1 Optimal result
3.2.32.2 Mathematica [C] (verified)
3.2.32.3 Rubi [A] (verified)
3.2.32.4 Maple [A] (verified)
3.2.32.5 Fricas [C] (verification not implemented)
3.2.32.6 Sympy [F(-1)]
3.2.32.7 Maxima [F(-1)]
3.2.32.8 Giac [F]
3.2.32.9 Mupad [F(-1)]

3.2.32.1 Optimal result

Integrand size = 25, antiderivative size = 224 \[ \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx=\frac {4 e^3}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos (c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {2 e^3 \cos ^3(c+d x)}{9 a^2 d (e \sin (c+d x))^{9/2}}-\frac {4 e}{5 a^2 d (e \sin (c+d x))^{5/2}}+\frac {16 e \cos (c+d x)}{45 a^2 d (e \sin (c+d x))^{5/2}}-\frac {4 \cos (c+d x)}{15 a^2 d e \sqrt {e \sin (c+d x)}}-\frac {4 E\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{15 a^2 d e^2 \sqrt {\sin (c+d x)}} \]

output
4/9*e^3/a^2/d/(e*sin(d*x+c))^(9/2)-2/9*e^3*cos(d*x+c)/a^2/d/(e*sin(d*x+c)) 
^(9/2)-2/9*e^3*cos(d*x+c)^3/a^2/d/(e*sin(d*x+c))^(9/2)-4/5*e/a^2/d/(e*sin( 
d*x+c))^(5/2)+16/45*e*cos(d*x+c)/a^2/d/(e*sin(d*x+c))^(5/2)-4/15*cos(d*x+c 
)/a^2/d/e/(e*sin(d*x+c))^(1/2)+4/15*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/si 
n(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2))*(e*si 
n(d*x+c))^(1/2)/a^2/d/e^2/sin(d*x+c)^(1/2)
 
3.2.32.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.99 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.73 \[ \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx=\frac {\sec ^4\left (\frac {1}{2} (c+d x)\right ) (\cos (c+d x)+i \sin (c+d x)) \left (-31-40 \cos (c+d x)-19 \cos (2 (c+d x))+e^{-2 i (c+d x)} \left (1+e^{i (c+d x)}\right )^4 \sqrt {1-e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^{2 i (c+d x)}\right )+16 i \sin (c+d x)+13 i \sin (2 (c+d x))\right )}{180 a^2 d e \sqrt {e \sin (c+d x)}} \]

input
Integrate[1/((a + a*Sec[c + d*x])^2*(e*Sin[c + d*x])^(3/2)),x]
 
output
(Sec[(c + d*x)/2]^4*(Cos[c + d*x] + I*Sin[c + d*x])*(-31 - 40*Cos[c + d*x] 
 - 19*Cos[2*(c + d*x)] + ((1 + E^(I*(c + d*x)))^4*Sqrt[1 - E^((2*I)*(c + d 
*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, E^((2*I)*(c + d*x))])/E^((2*I)*(c + 
 d*x)) + (16*I)*Sin[c + d*x] + (13*I)*Sin[2*(c + d*x)]))/(180*a^2*d*e*Sqrt 
[e*Sin[c + d*x]])
 
3.2.32.3 Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.05, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4360, 3042, 3354, 3042, 3352, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(a \sec (c+d x)+a)^2 (e \sin (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a-a \csc \left (c+d x-\frac {\pi }{2}\right )\right )^2 \left (e \cos \left (c+d x-\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int \frac {\cos ^2(c+d x)}{(a (-\cos (c+d x))-a)^2 (e \sin (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x-\frac {\pi }{2}\right )^2}{\left (a \sin \left (c+d x-\frac {\pi }{2}\right )-a\right )^2 \left (e \cos \left (c+d x-\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3354

\(\displaystyle \frac {e^4 \int \frac {\cos ^2(c+d x) (a-a \cos (c+d x))^2}{(e \sin (c+d x))^{11/2}}dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^4 \int \frac {\sin \left (c+d x-\frac {\pi }{2}\right )^2 \left (\sin \left (c+d x-\frac {\pi }{2}\right ) a+a\right )^2}{\left (e \cos \left (c+d x-\frac {\pi }{2}\right )\right )^{11/2}}dx}{a^4}\)

\(\Big \downarrow \) 3352

\(\displaystyle \frac {e^4 \int \left (\frac {a^2 \cos ^4(c+d x)}{(e \sin (c+d x))^{11/2}}-\frac {2 a^2 \cos ^3(c+d x)}{(e \sin (c+d x))^{11/2}}+\frac {a^2 \cos ^2(c+d x)}{(e \sin (c+d x))^{11/2}}\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^4 \left (-\frac {4 a^2 E\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {e \sin (c+d x)}}{15 d e^6 \sqrt {\sin (c+d x)}}-\frac {4 a^2 \cos (c+d x)}{15 d e^5 \sqrt {e \sin (c+d x)}}-\frac {4 a^2}{5 d e^3 (e \sin (c+d x))^{5/2}}+\frac {16 a^2 \cos (c+d x)}{45 d e^3 (e \sin (c+d x))^{5/2}}+\frac {4 a^2}{9 d e (e \sin (c+d x))^{9/2}}-\frac {2 a^2 \cos ^3(c+d x)}{9 d e (e \sin (c+d x))^{9/2}}-\frac {2 a^2 \cos (c+d x)}{9 d e (e \sin (c+d x))^{9/2}}\right )}{a^4}\)

input
Int[1/((a + a*Sec[c + d*x])^2*(e*Sin[c + d*x])^(3/2)),x]
 
output
(e^4*((4*a^2)/(9*d*e*(e*Sin[c + d*x])^(9/2)) - (2*a^2*Cos[c + d*x])/(9*d*e 
*(e*Sin[c + d*x])^(9/2)) - (2*a^2*Cos[c + d*x]^3)/(9*d*e*(e*Sin[c + d*x])^ 
(9/2)) - (4*a^2)/(5*d*e^3*(e*Sin[c + d*x])^(5/2)) + (16*a^2*Cos[c + d*x])/ 
(45*d*e^3*(e*Sin[c + d*x])^(5/2)) - (4*a^2*Cos[c + d*x])/(15*d*e^5*Sqrt[e* 
Sin[c + d*x]]) - (4*a^2*EllipticE[(c - Pi/2 + d*x)/2, 2]*Sqrt[e*Sin[c + d* 
x]])/(15*d*e^6*Sqrt[Sin[c + d*x]])))/a^4
 

3.2.32.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3352
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Int[ExpandTrig 
[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x] /; F 
reeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
 

rule 3354
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2* 
m)   Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e + f*x] 
)^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && 
ILtQ[m, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
3.2.32.4 Maple [A] (verified)

Time = 6.28 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.95

method result size
default \(\frac {\frac {4 e^{3} \left (9 \cos \left (d x +c \right )^{2}-4\right )}{45 a^{2} \left (e \sin \left (d x +c \right )\right )^{\frac {9}{2}}}+\frac {\frac {4 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sin \left (d x +c \right )^{\frac {11}{2}} \operatorname {EllipticE}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )}{15}-\frac {2 \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \sin \left (d x +c \right )^{\frac {11}{2}} \operatorname {EllipticF}\left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )}{15}+\frac {4 \sin \left (d x +c \right )^{7}}{15}-\frac {38 \sin \left (d x +c \right )^{5}}{45}+\frac {46 \sin \left (d x +c \right )^{3}}{45}-\frac {4 \sin \left (d x +c \right )}{9}}{e \,a^{2} \sin \left (d x +c \right )^{5} \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d}\) \(213\)

input
int(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
(4/45*e^3/a^2/(e*sin(d*x+c))^(9/2)*(9*cos(d*x+c)^2-4)+2/45/e*(6*(-sin(d*x+ 
c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(11/2)*EllipticE((-sin(d*x+c 
)+1)^(1/2),1/2*2^(1/2))-3*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin 
(d*x+c)^(11/2)*EllipticF((-sin(d*x+c)+1)^(1/2),1/2*2^(1/2))+6*sin(d*x+c)^7 
-19*sin(d*x+c)^5+23*sin(d*x+c)^3-10*sin(d*x+c))/a^2/sin(d*x+c)^5/cos(d*x+c 
)/(e*sin(d*x+c))^(1/2))/d
 
3.2.32.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 222, normalized size of antiderivative = 0.99 \[ \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx=-\frac {2 \, {\left (3 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} \sqrt {-i \, e} \sin \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} \sqrt {i \, e} \sin \left (d x + c\right ) {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + {\left (6 \, \cos \left (d x + c\right )^{3} + 12 \, \cos \left (d x + c\right )^{2} + 19 \, \cos \left (d x + c\right ) + 8\right )} \sqrt {e \sin \left (d x + c\right )}\right )}}{45 \, {\left (a^{2} d e^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} d e^{2} \cos \left (d x + c\right ) + a^{2} d e^{2}\right )} \sin \left (d x + c\right )} \]

input
integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x, algorithm="fricas")
 
output
-2/45*(3*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2)) 
*sqrt(-I*e)*sin(d*x + c)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, c 
os(d*x + c) + I*sin(d*x + c))) + 3*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2 
)*cos(d*x + c) - I*sqrt(2))*sqrt(I*e)*sin(d*x + c)*weierstrassZeta(4, 0, w 
eierstrassPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c))) + (6*cos(d*x + c) 
^3 + 12*cos(d*x + c)^2 + 19*cos(d*x + c) + 8)*sqrt(e*sin(d*x + c)))/((a^2* 
d*e^2*cos(d*x + c)^2 + 2*a^2*d*e^2*cos(d*x + c) + a^2*d*e^2)*sin(d*x + c))
 
3.2.32.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(1/(a+a*sec(d*x+c))**2/(e*sin(d*x+c))**(3/2),x)
 
output
Timed out
 
3.2.32.7 Maxima [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x, algorithm="maxima")
 
output
Timed out
 
3.2.32.8 Giac [F]

\[ \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \left (e \sin \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(a+a*sec(d*x+c))^2/(e*sin(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(1/((a*sec(d*x + c) + a)^2*(e*sin(d*x + c))^(3/2)), x)
 
3.2.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \sec (c+d x))^2 (e \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2}{a^2\,{\left (e\,\sin \left (c+d\,x\right )\right )}^{3/2}\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \]

input
int(1/((e*sin(c + d*x))^(3/2)*(a + a/cos(c + d*x))^2),x)
 
output
int(cos(c + d*x)^2/(a^2*(e*sin(c + d*x))^(3/2)*(cos(c + d*x) + 1)^2), x)